Learn Equations: Easy Equations with Rational Numbers
Solving equations with rational numbers is one of the first skills that you'll learn in algebra. In fact, you may have already learned to solve equations without realizing it! Read on to learn the basics of solving equations with rational numbers.
Simple Rational Number Equations
In math, an equation is a statement that tells you two expressions are equal. An expression can be a single number, like 12, or it can contain numbers, variables and operation signs, like this: 3(x + 7)/4. Most of the equations you'll see in algebra will have rational numbers, which are numbers that can be written as fractions. They include integers and fractions, as well as most square roots and decimals.
Another important fact about equations is that they can be 'true' or 'false.' For instance, the equation 5 = 5 is true, since five does equal five. However, the equation 5 = 7 is false, since five does not equal seven. When you're solving an equation, you have to assume that it is true.
The Property of Equality
To solve equations, it's important to understand this rule: if you perform an operation on one side of an equation, you must perform the same operation on the other side for the equation to remain true. Here's an example with a very simple equation:
5 = 5
5 + 7 = 5 + 7
12 = 12
In this example, we performed the same operation  adding seven  on each side of the equation, so the equation remained true. If we had only added seven to one side of the equation, it would have stated that 12 = 5, which is not true. Keep this rule in mind as you read through the next section about solving equations.
How to Solve Equations
Solving an equation is just like solving a mystery. You are the detective, and your first clue is the 'equals' sign in the equation. It tells you that the expressions to the left and right of it are equal. To crack the case of the unknown number, you must figure out what number will make the equation true when it is substituted for the variable.
There are two approaches you can take to uncover the identity of the missing number. One is to solve the equation in your head, using mental math. For example, you can look at the equation 4 + x = 9, and mentally calculate that 4 + 5 = 9, so x = 5. But what do you do if your equation has larger numbers, and you can't figure it out in your head? For instance, how do you solve an equation like 4,378 + x = 10,524?
First, think back to how you solved the equation 4 + x = 9 in your head. You might have asked yourself, 'What number plus four equals nine?' You may also have wondered, 'Nine minus what number equals four?' The answer to both of these questions is five, of course. Although you may not have realize it, here's how you solved that equation:
4 + x = 9
4  4 + x = 9  4
x = 5
You subtracted four from both sides of the equation. On the left side, this meant that you subtracted four from four, leaving you with 0 + x, or just x. On the right side, you subtracted four from nine, leaving you with just five. As long as you perform the same operation on both sides of the equation, the equation will still be true. You can use the same strategy for equations with larger numbers:
4,378 + x = 10,524
4,378  4,378 + x = 10,524  4,378
x = 6,146
Tip: You'll probably hear your math teacher talking about 'isolating the variable,' which is just a fancy way to say 'getting the variable on one side of the equals sign all by itself.' This is what we did in the two examples above. It is an essential step in solving the equation, because once the variable is by itself, you know that it is equal to the expression on the other side of the equation.
Practice Problems
For problems one and two, you'll use the same steps from the examples above. For problems three through five, you'll need to use your detective skills. Just remember that you must perform the same operation on both sides of the equation, and that you want to pick an operation that will help you get the variable by itself.
1. 8 + x = 15
2. 745 + y = 1,000
3. y  12 = 4
4. x  438 = 232
5. x ÷ 2 = 4
Solutions
1. To solve 8 + x = 15, you need to find the value of x. To do this, subtract eight from both sides of the equation to get the solution, x = 7.
8 + x = 15
8  8 + x = 15  8
x = 7
2. Here's the solution for this equation:
745 + y = 1,000
745  745 + y = 1,000  745
y = 255
3. You'll need to use a slightly different approach to solve this equation. Since the 12 is negative, you'll need to add 12 to both sides of the equation to get the variable, y, by itself.
y  12 = 4
y  12 + 12 = 4 + 12
y = 16
4. Although x  438 = 232 has bigger numbers, you'll still use the same process to solve it that you used for the previous problem:
x  438 = 232
x  438 + 438 = 232 + 438
x = 670
5. To solve x ÷ 2 = 4, you need to get the x by itself. You may have figured out that to accomplish this, you need to use the inverse, or 'opposite,' operation. In problems one and two, when a number was being added to the variable, you subtracted that number from both sides, since subtraction is the inverse of addition. In problems three and four, where a number was subtracted from the variable, you added it to both sides.
In this problem, the variable is being divided by a number. The inverse of division is multiplication, so you need to multiply both sides of the equation by the number, like this:
x ÷ 2 = 4
2(x ÷ 2) = 2(4)
x = 8
Other Articles You May Be Interested In

Prime numbers are positive integers that have fascinated people for thousands of years. If your child struggles to grasp prime numbers, it may help to gain a deeper understanding of how they're defined. Your child may also benefit from knowing how to identify them and how they're useful in nature.

Numerous studies show the ill effects that being obese or overweight have on health. So if you're near the bottom of the 'mostobese states' list, it's likely time to do something about it. When Tennessee found itself in that spot, it began its fight to shed pounds with the formation of the Tennessee Obesity Task Force. Are the...
We Found 7 Tutors You Might Be Interested In
Huntington Learning
 What Huntington Learning offers:
 Online and incenter tutoring
 One on one tutoring
 Every Huntington tutor is certified and trained extensively on the most effective teaching methods
K12
 What K12 offers:
 Online tutoring
 Has a strong and effective partnership with public and private schools
 AdvancEDaccredited corporation meeting the highest standards of educational management
Kaplan Kids
 What Kaplan Kids offers:
 Online tutoring
 Customized learning plans
 RealTime Progress Reports track your child's progress
Kumon
 What Kumon offers:
 Incenter tutoring
 Individualized programs for your child
 Helps your child develop the skills and study habits needed to improve their academic performance
Sylvan Learning
 What Sylvan Learning offers:
 Online and incenter tutoring
 Sylvan tutors are certified teachers who provide personalized instruction
 Regular assessment and progress reports
Tutor Doctor
 What Tutor Doctor offers:
 InHome tutoring
 One on one attention by the tutor
 Develops personlized programs by working with your child's existing homework
TutorVista
 What TutorVista offers:
 Online tutoring
 Student works oneonone with a professional tutor
 Using the virtual whiteboard workspace to share problems, solutions and explanations