How to Do 7th Grade Math: Finding Slopes
Finding slope is a fundamental algebra concept that some students learn in 7th grade. You might be asked to find the slope of a line by looking at a graph or by manipulating an equation. This article will explain how to find slope in different situations.
How to Find Slope
The slope, or steepness, of a line represents the rate at which the line is increasing or decreasing. A line with a slope that increases from left to right has a positive slope, and a line that decreases from left to right has a negative slope. Lines that are very steep have larger slopes compared to lines that are less steep.
The PointSlope Formula
Sometimes, you'll be asked to find the slope of a line that's drawn on a graph or described in a problem. Usually, two points on the line will be given to you in the problem. For instance, your teacher might ask you to find the slope of a line that passes through (1, 2) and (4, 8).
The formula for slope is (change in y)/(change in x). It is often called the pointslope formula, and sometimes it's described as 'rise over run.' Rise refers to the change in the value of y between one point and the other point, and run is the change in the value of x between the two points. Here's another way of writing the pointslope formula for a line that passes through points (a, b) and (c, d):
Slope = (d  b)/(c  a)
Let's solve the problem stated above with the points (1, 2) and (4, 8). First, we need to find the 'change in y,' which is just the difference in the y values of the two points. The y values are eight and two, and 8  2 = 6, so the 'rise' in our 'rise over run' formula is six.
The 'run' is the 'change in x,' which is the difference between four and one. Since 4  1 = 3, three is the 'run.' Last, we divide 'rise over run' to get the slope of two (6 ÷ 3 = 2). Here's the mathematical solution:
(8  2)/(4  1)
= 6/3
= 2
Tip: The slope of a line that passes through (1, 2) and (4, 8) is the same as the slope of a line that passes through (4, 8) and (1, 2). It doesn't matter which order the points are in, but it does matter that you keep the points in the same order when calculating the values of the rise and run. The two values for each point should be lined up vertically in your equation. For instance, eight should be above four and two should be above one.
Slopeintercept Form
Every line is represented by a linear equation. You might be given an equation that represents a line and asked to find the slope. To do this, you don't have to actually draw the line and find two points. Instead, you just have to manipulate the equation so that it is in slopeintercept form. It looks like this:
y = mx + b
When an equation is in this form, the value of m is the slope. For instance, find the slope of a line with the equation 4x + y = 2. To put this equation in slopeintercept form, move the term '4x' to the right side by adding it to both sides of the equation. This gives you the equation 'y = 4x  2,' which is now in slopeintercept form. The value of m in this equation is four, so that is the slope.
Tip: Slopes come in many forms. They may be fractions or integers, and they can also be positive or negative. If an equation in slopeintercept form is y = x + b, then the slope, or value of m, is equal to one. For instance, the slope of y = x + 3 is one. The one is left out since (1)(x) = x.
Slopes for Vertical and Horizontal Lines
Since horizontal lines have no steepness, their slopes are equal to zero. Imagine a line that passes through the points (2, 3) and (4, 3). The 'change in y' is zero, since 3  3 = 0. Zero divided by any other number equals zero, so that is the slope.
For vertical lines, the slope is undefined. For instance, a line that passes through the points (5, 7) and (5, 3) would have a 'change in x' of zero. Since you can't divide by zero, the slope is undefined.
Practice Problems
1. Find the slope of a line that passes through the points (2, 1) and (6, 3).
2. Find the slope of a line with the equation y = 1/2x + 3.
3. Find the slope of a line that passes through the points (4, 2) and (6, 2).
4. Find the slope of a line with the equation 5x + y = 7.
Solutions
1. The correct answer is 1/2. Plug the numbers into the pointslope formula, like this:
(3  1)/(6  2)
= 2/4
= 1/2
2. This equation is already in slopeintercept form, so no manipulation is required. The fraction 1/2 is in the m position, so it is the slope.
3. The 'change in y' for this line is zero, since both yvalues are the same (2  [2] = 0). This means that the slope of the line is zero.
4. To find the slope of this line, we need to put the equation 5x + y = 7 into slopeintercept form. Here's how:
5x + y = 7
5x  5x + y =  5x + 7
y =  5x + 7
Once the equation is in slopeintercept form, you can see that the value of m is 5, so that is the slope.
Other Articles You May Be Interested In

Imagine a math teaching tool so effective that it need only be employed twice per week for less than an hour to result in huge proficiency gains. Impossible, you say? Not so...and MIND Research Institute has the virtual penguin to prove it.

Should kindergartners put away the building blocks and open the math books? According to recent research, earlier is better when it comes to learning mathematical concepts. But that could put undue pressure on kids, parents and even teachers.
We Found 7 Tutors You Might Be Interested In
Huntington Learning
 What Huntington Learning offers:
 Online and incenter tutoring
 One on one tutoring
 Every Huntington tutor is certified and trained extensively on the most effective teaching methods
K12
 What K12 offers:
 Online tutoring
 Has a strong and effective partnership with public and private schools
 AdvancEDaccredited corporation meeting the highest standards of educational management
Kaplan Kids
 What Kaplan Kids offers:
 Online tutoring
 Customized learning plans
 RealTime Progress Reports track your child's progress
Kumon
 What Kumon offers:
 Incenter tutoring
 Individualized programs for your child
 Helps your child develop the skills and study habits needed to improve their academic performance
Sylvan Learning
 What Sylvan Learning offers:
 Online and incenter tutoring
 Sylvan tutors are certified teachers who provide personalized instruction
 Regular assessment and progress reports
Tutor Doctor
 What Tutor Doctor offers:
 InHome tutoring
 One on one attention by the tutor
 Develops personlized programs by working with your child's existing homework
TutorVista
 What TutorVista offers:
 Online tutoring
 Student works oneonone with a professional tutor
 Using the virtual whiteboard workspace to share problems, solutions and explanations